Stochastic Models for Nonstandard, High-Dimensional Data

Chad M. Schafer, InCA Group

www.incagroup.org

Department of Statistics

Carnegie Mellon University

October 2009

The Core Collaborators

Ann B. Lee, Assistant Professor

Chad M. Schafer, Assistant Professor

Peter E. Freeman, Research Associate

Susan M. Buchman, Ph.D. Student

Joseph W. Richards, Ph.D. Student

Work Supported by NASA-AISR Grant

The InCA Group: www.incagroup.org

Raw data are often in a form not amenable to statistical anlaysis

Example: Using spectra as predictors in regression

An SDSS galaxy spectrum.

3,846 galaxy spectra, colored by redshift (Richards, Freeman, Lee, Schafer (2009a))

Raw data are often in a form not amenable to statistical anlaysis

Example: Modelling the distribution of Tropical Cyclone tracks

Tropical Cyclone (TC) Tracks (Buchman, Lee, Schafer (2009))

1,000 TC tracks, colored by year (Buchman, Lee, and Schafer (2009))

Reparametrize data into a new space, often of lower dimension

Data can be "nonstandard": images, spectra, TC tracks, etc.

Location in new embedding space ideally encodes important information

Aids classification, regression, and other inference tasks

Transformations

Seek embedding of data in Euclidean space that best preserves user-defined similarity/distance metric

Multidimensional Scaling

How to specify the pairwise distances?

Often, we only have reliable way of judging if pairs of objects are "similar" via a local distance metric

Specifying the Distances

(Buchman, Lee, Schafer (2009))

Specifying the Distances

A simple, one-dimensional manifold.

Specifying the Distances

Euclidean distance good choice for local, not global, distance metric

Diffusion maps are an approach to spectral connectivity analysis (Lee and Wasserman (2009))

Based on constructing fictive random walks on the data

At each "step," can only move to "similar" data points

Walks starting from dissimilar data points will require many steps to "meet"

Two points on the noisy spiral

Gaussian centered on one point

Yields distribution over points after first step

Distribution after the second step

Distribution after the 25^{th} step

Imagine doing for both points

Coifman and Lafon (2006)

After t steps, a walk which begins at \mathbf{x} has distribution $p_t(\mathbf{x}, \cdot)$ over \mathcal{X}_{obs}

As $t \to \infty$, it holds that $p_t(\mathbf{x}, \cdot) \to s(\cdot)$, where $s(\cdot)$ is the stationary distribution for the walk

Define the t-step diffusion distance between x and y as

$$D_t(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{\mathbf{z} \in \mathcal{X}_{obs}} \frac{(p_t(\mathbf{x}, \mathbf{z}) - p_t(\mathbf{y}, \mathbf{z}))^2}{s(\mathbf{z})}}$$

Diffusion Map Construction

Need to specify "local" distance measure (Δ_{ℓ}) and neighborhood size (ϵ)

If at x, probability next step is to y is proportional to

$$\exp\left(-\Delta_{\ell}(\mathbf{x},\mathbf{y})^2/4\epsilon\right),$$

i.e., a Gaussian kernel with a "standard deviation" of $\sqrt{\epsilon}/2$

Coordinate Functions

In PCA, coordinate functions are linear

Coordinate Functions

First coordinate plot for diffusion map

Coordinate Functions

Second coordinate plot for diffusion map

Preliminary TC Results

1,000 TC tracks, colored by year (Buchman, Lee, and Schafer (2009))

Preliminary TC Results

Tracks close to (0.39, 0.086, 0.0098) in diffusion space

Preliminary TC Results

Comparison of density at (0.39, 0.086, 0.0098) to SST at (30W, 15N)

Current Directions

Incorporating Covariates (climate variables)

Evolution of distribution of galaxy shapes with redshift

Comparing simulation output and real data

References

Buchman, Lee, and Schafer (2009). To appear in Statistical Methodology. arXiv:0907.0199

Coifman and Lafon (2006). Appl. and Comput. Harmon. Anal. 21 5-30.

Freeman, Newman, Lee, Richards, and Schafer (2009). To appear in MNRAS.

arXiv:0906.0995

Lee and Wasserman (2008). Submitted. arXiv:0811.0121

Richards, Freeman, Lee, and Schafer (2009a). ApJ. 691 32-42.

Richards, Freeman, Lee, and Schafer (2009b). To appear in MNRAS. arXiv:0905.4683